skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chakraborty, Sudip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study shows the impact of black carbon (BC) aerosol atmospheric rivers (AAR) on the Antarctic Sea ice retreat. We detect that a higher number of BC AARs arrived in the Antarctic region due to increased anthropogenic wildfire activities in 2019 in the Amazon compared to 2018. Our analyses suggest that the BC AARs led to a reduction in the sea ice albedo, increased the amount of sunlight absorbed at the surface, and a significant reduction of sea ice over the Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions in 2019. The Weddell region experienced the largest amount of sea ice retreat ($$ \sim \mathrm{33,000} $$km2) during the presence of BC AARs as compared to$$ \sim \mathrm{13,000} $$ km2during non-BC days. We used a suite of data science techniques, including random forest, elastic net regression, matrix profile, canonical correlations, and causal discovery analyses, to discover the effects and validate them. Random forest, elastic net regression, and causal discovery analyses show that the shortwave upward radiative flux or the reflected sunlight, temperature, and longwave upward energy from the earth are the most important features that affect sea ice extent. Canonical correlation analysis confirms that aerosol optical depth is negatively correlated with albedo, positively correlated with shortwave energy absorbed at the surface, and negatively correlated with Sea Ice Extent. The relationship is stronger in 2019 than in 2018. This study also employs the matrix profile and convolution operation of the Convolution Neural Network (CNN) to detect anomalous events in sea ice loss. These methods show that a higher amount of anomalous melting events were detected over the Weddell and Ross regions. 
    more » « less
  2. Abstract The Congo Basin hosts the world's second largest rainforest and is a major rainfall center. However, the primary sources of moisture needed to maintain this forest, either from evapotranspiration (ET) or advection from the ocean, remain unclear. We use satellite observations of the deuterium content of water vapor (), solar induced fluorescence (SIF), precipitation, and atmospheric reanalysis to examine the relative contribution of ET to moisture in the free troposphere. We find that SIF, an indicator of photosynthesis, covaries within early rainy seasons, suggesting that ET is an important contributor to atmospheric moisture in both the spring and fall rainy seasons. However, the relative contribution of ET to the free tropospheric moisture varies between the two rainy seasons. Observedrelative to a range of observationally constrained, isotopic mixing models representative of water vapor coming from land suggests thatof the free tropospheric moisture come from ET in February, andin April, versusin August andin October. Reanalysis indicate that this difference between seasons is due to increased advection of ocean air during the fall season, thus reducing the relative contribution of ET to the Congo Basin in the fall. In addition, ET is the primary atmospheric moisture source in the winter and summer dry seasons, consistent with estimates reported in literature. Our results highlight the importance of ET from the Congo rainforest as an important source of moisture for initiating the rainy seasons. 
    more » « less